πŸ“–
Wiki
CNCFSkywardAIHuggingFaceLinkedInKaggleMedium
  • Home
    • πŸš€About
  • πŸ‘©β€πŸ’»πŸ‘©Freesoftware
    • πŸ‰The GNU Hurd
      • πŸ˜„The files extension
      • πŸ“½οΈTutorial for starting
      • 🚚Continue Working for the Hurd
      • πŸš΄β€β™‚οΈcgo
        • πŸ‘―β€β™€οΈStatically VS Dynamically binding
        • 🧌Different ways in binding
        • πŸ‘¨β€πŸ’»Segfault
      • πŸ›ƒRust FFI
    • πŸ§šπŸ»β€β™‚οΈProgramming
      • πŸ“–Introduction to programming
      • πŸ“–Mutable Value Semantics
      • πŸ“–Linked List
      • πŸ“–Rust
        • πŸ“–Keyword dyn
        • πŸ“–Tonic framework
        • πŸ“–Tokio
        • πŸ“–Rust read files
  • πŸ›€οΈAI techniques
    • πŸ—„οΈframework
      • 🧷pytorch
      • πŸ““Time components
      • πŸ““burn
    • 🍑Adaptation
      • 🎁LoRA
        • ℹ️Matrix Factorization
        • πŸ“€SVD
          • ✝️Distillation of SVD
          • 🦎Eigenvalues of a covariance matrix
            • 🧧Eigenvalues
            • πŸͺCovariance Matrix
        • πŸ›«Checkpoint
      • 🎨PEFT
    • πŸ™‹β€β™‚οΈTraining
      • πŸ›»Training with QLoRA
      • 🦌Deep Speed
    • 🧠Stable Diffusion
      • πŸ€‘Stable Diffusion model
      • πŸ“ΌStable Diffusion v1 vs v2
      • πŸ€Όβ€β™€οΈThe important parameters for stunning AI image
      • ⚾Diffusion in image
      • 🚬Classifier Free Guidance
      • ⚜️Denoising strength
      • πŸ‘·Stable Diffusion workflow
      • πŸ“™LoRA(Stable Diffusion)
      • πŸ—ΊοΈDepth maps
      • πŸ“‹CLIP
      • βš•οΈEmbeddings
      • πŸ• VAE
      • πŸ’₯Conditioning
      • 🍁Diffusion sampling/samplers
      • πŸ₯ Prompt
      • πŸ˜„ControlNet
        • πŸͺ‘Settings Explained
        • 🐳ControlNet with models
    • πŸ¦™Large Language Model
      • ☺️SMID
      • πŸ‘¨β€πŸŒΎARM NEON
      • 🍊Metal
      • 🏁BLAS
      • πŸ‰ggml
      • πŸ’»llama.cpp
      • 🎞️Measuring model quality
      • πŸ₯žType for NNC
      • πŸ₯žToken
      • πŸ€Όβ€β™‚οΈDoc Retrieval && QA with LLMs
      • Hallucination(AI)
    • 🐹diffusers
      • πŸ’ͺDeconstruct the Stable Diffusion pipeline
  • 🎹Implementing
    • πŸ‘¨β€πŸ’»diffusers
      • πŸ“–The Annotated Diffusion Model
  • 🧩Trending
    • πŸ“–Trending
      • πŸ“–Vector database
      • 🍎Programming Languages
        • πŸ“–Go & Rust manage their memories
        • πŸ“–Performance of Rust and Python
        • πŸ“–Rust ownership and borrowing
      • πŸ“–Neural Network
        • 🎹Sliding window/convolutional filter
      • Quantum Machine Learning
  • 🎾Courses Collection
    • πŸ“–Courses Collection
      • πŸ“šAcademic In IT
        • πŸ“Reflective Writing
      • πŸ“–UCB
        • πŸ“–CS 61A
          • πŸ“–Computer Science
          • πŸ“–Scheme
          • πŸ“–Python
          • πŸ“–Data Abstraction
          • πŸ“–Object-Oriented Programming
          • πŸ“–Interpreters
          • πŸ“–Streams
      • 🍎MIT Algorithm Courses
        • 0️MIT 18.01
          • 0️Limits and continuity
          • 1️Derivatives
          • 3️Integrals
        • 1️MIT 6.042J
          • πŸ”’Number Theory
          • πŸ“ŠGraph Theory
            • 🌴Graph and Trees
            • 🌲Shortest Paths and Minimum Spanning Trees
        • 2️MIT 6.006
          • Intro and asymptotic notation
          • Sorting and Trees
            • Sorting
            • Trees
          • Hashing
          • Graphs
          • Shortest Paths
          • Dynamic Programming
          • Advanced
        • 3️MIT 6.046J
          • Divide and conquer
          • Dynamic programming
          • Greedy algorithms
          • Graph algorithms
Powered by GitBook
On this page
  • Overview
  • cgo
  • SWIG
  • Reference

Was this helpful?

Edit on GitHub
  1. πŸ‘©Freesoftware
  2. The GNU Hurd
  3. cgo

Different ways in binding

Using shared object binary file in go binding

Overview

The main difference between using cgo and SWIG to call C/C++ code from Go is that cgo generates wrappers to call C code from Go, while SWIG generates wrappers to call both C and C++ code from Go. Here are some more differences:

cgo

  • cgo is a tool provided by Go that enables the creation of Go packages that call C code.

  • cgo generates wrappers to call C code from Go, but there is no convenient way to call C++ code from Go.

  • cgo requires a C toolchain to be installed.

  • cgo provides a pseudo-package "C" that can be used to import C code into Go code.

  • cgo translates C types into equivalent unexported Go types, so a Go package should not expose C types in its exported API.

  • cgo can be used to export C functions and types in a Go package's exported API using the //export comment.

SWIG

  • SWIG is a software development tool that generates wrappers to call both C and C++ code from Go.

  • SWIG generates wrappers to call C/C++ code from Go, filling the gap left by cgo for calling C++ code from Go.

  • SWIG supports both the gc compiler of the Go distribution and the gccgo compiler.

  • SWIG generates wrapper code that can be compiled into a Go package.

  • SWIG requires an interface file that describes the C/C++ code to be used in Go.

  • SWIG can generate a natural Go interface to the C/C++ code, but some modifications may be required due to the differences between the languages.

  • SWIG can be used to generate wrappers to call C/C++ code from Go on different platforms.

Note that both cgo and SWIG should be used with caution, as they can lead to compatibility issues between different Go packages that use the same C/C++ types. Additionally, using cgo or SWIG can result in a loss of type safety and cross-compilation targets that Go provides.

Reference

PreviousStatically VS Dynamically bindingNextSegfault

Last updated 1 year ago

Was this helpful?

πŸ‘©β€πŸ’»
πŸ‰
πŸš΄β€β™‚οΈ
🧌
https://github.com/vladimirvivien/go-cshared-examples