πŸ“–
Wiki
CNCFSkywardAIHuggingFaceLinkedInKaggleMedium
  • Home
    • πŸš€About
  • πŸ‘©β€πŸ’»πŸ‘©Freesoftware
    • πŸ‰The GNU Hurd
      • πŸ˜„The files extension
      • πŸ“½οΈTutorial for starting
      • 🚚Continue Working for the Hurd
      • πŸš΄β€β™‚οΈcgo
        • πŸ‘―β€β™€οΈStatically VS Dynamically binding
        • 🧌Different ways in binding
        • πŸ‘¨β€πŸ’»Segfault
      • πŸ›ƒRust FFI
    • πŸ§šπŸ»β€β™‚οΈProgramming
      • πŸ“–Introduction to programming
      • πŸ“–Mutable Value Semantics
      • πŸ“–Linked List
      • πŸ“–Rust
        • πŸ“–Keyword dyn
        • πŸ“–Tonic framework
        • πŸ“–Tokio
        • πŸ“–Rust read files
  • πŸ›€οΈAI techniques
    • πŸ—„οΈframework
      • 🧷pytorch
      • πŸ““Time components
      • πŸ““burn
    • 🍑Adaptation
      • 🎁LoRA
        • ℹ️Matrix Factorization
        • πŸ“€SVD
          • ✝️Distillation of SVD
          • 🦎Eigenvalues of a covariance matrix
            • 🧧Eigenvalues
            • πŸͺCovariance Matrix
        • πŸ›«Checkpoint
      • 🎨PEFT
    • πŸ™‹β€β™‚οΈTraining
      • πŸ›»Training with QLoRA
      • 🦌Deep Speed
    • 🧠Stable Diffusion
      • πŸ€‘Stable Diffusion model
      • πŸ“ΌStable Diffusion v1 vs v2
      • πŸ€Όβ€β™€οΈThe important parameters for stunning AI image
      • ⚾Diffusion in image
      • 🚬Classifier Free Guidance
      • ⚜️Denoising strength
      • πŸ‘·Stable Diffusion workflow
      • πŸ“™LoRA(Stable Diffusion)
      • πŸ—ΊοΈDepth maps
      • πŸ“‹CLIP
      • βš•οΈEmbeddings
      • πŸ• VAE
      • πŸ’₯Conditioning
      • 🍁Diffusion sampling/samplers
      • πŸ₯ Prompt
      • πŸ˜„ControlNet
        • πŸͺ‘Settings Explained
        • 🐳ControlNet with models
    • πŸ¦™Large Language Model
      • ☺️SMID
      • πŸ‘¨β€πŸŒΎARM NEON
      • 🍊Metal
      • 🏁BLAS
      • πŸ‰ggml
      • πŸ’»llama.cpp
      • 🎞️Measuring model quality
      • πŸ₯žType for NNC
      • πŸ₯žToken
      • πŸ€Όβ€β™‚οΈDoc Retrieval && QA with LLMs
      • Hallucination(AI)
    • 🐹diffusers
      • πŸ’ͺDeconstruct the Stable Diffusion pipeline
  • 🎹Implementing
    • πŸ‘¨β€πŸ’»diffusers
      • πŸ“–The Annotated Diffusion Model
  • 🧩Trending
    • πŸ“–Trending
      • πŸ“–Vector database
      • 🍎Programming Languages
        • πŸ“–Go & Rust manage their memories
        • πŸ“–Performance of Rust and Python
        • πŸ“–Rust ownership and borrowing
      • πŸ“–Neural Network
        • 🎹Sliding window/convolutional filter
      • Quantum Machine Learning
  • 🎾Courses Collection
    • πŸ“–Courses Collection
      • πŸ“šAcademic In IT
        • πŸ“Reflective Writing
      • πŸ“–UCB
        • πŸ“–CS 61A
          • πŸ“–Computer Science
          • πŸ“–Scheme
          • πŸ“–Python
          • πŸ“–Data Abstraction
          • πŸ“–Object-Oriented Programming
          • πŸ“–Interpreters
          • πŸ“–Streams
      • 🍎MIT Algorithm Courses
        • 0️MIT 18.01
          • 0️Limits and continuity
          • 1️Derivatives
          • 3️Integrals
        • 1️MIT 6.042J
          • πŸ”’Number Theory
          • πŸ“ŠGraph Theory
            • 🌴Graph and Trees
            • 🌲Shortest Paths and Minimum Spanning Trees
        • 2️MIT 6.006
          • Intro and asymptotic notation
          • Sorting and Trees
            • Sorting
            • Trees
          • Hashing
          • Graphs
          • Shortest Paths
          • Dynamic Programming
          • Advanced
        • 3️MIT 6.046J
          • Divide and conquer
          • Dynamic programming
          • Greedy algorithms
          • Graph algorithms
Powered by GitBook
On this page
  • Example
  • Reverse an Array
  • Remove Duplicates from Sorted Array
  • Practice

Was this helpful?

Edit on GitHub
  1. πŸ‘©Freesoftware
  2. Algorithm

Two-pointer Technique

Last updated 1 year ago

Was this helpful?

It is one of the main techniques used for in-place Array algorithms. We can use it to iterate over the Array in two different places at the same time.

And it is also used in the

Example

Reverse an Array

def reverse_array(arr):
    left = 0
    right = len(arr) - 1
    while left < right:
        arr[left], arr[right] = arr[right], arr[left]
        left += 1
        right -= 1

Remove Duplicates from Sorted Array

def remove_duplicates(arr):
    if len(arr) == 0:
        return 0
    left = 0
    for right in range(1, len(arr)):
        if arr[left] != arr[right]:
            left += 1
            arr[left] = arr[right]
    return left + 1

Practice

πŸ‘©β€πŸ’»
🎹
Slow and Fast pointer technique
Sliding Window technique
Reverse String
Reverse Vowels of a String
Remove Duplicates from Sorted Array