πŸ“–
Wiki
CNCFSkywardAIHuggingFaceLinkedInKaggleMedium
  • Home
    • πŸš€About
  • πŸ‘©β€πŸ’»πŸ‘©Freesoftware
    • πŸ‰The GNU Hurd
      • πŸ˜„The files extension
      • πŸ“½οΈTutorial for starting
      • 🚚Continue Working for the Hurd
      • πŸš΄β€β™‚οΈcgo
        • πŸ‘―β€β™€οΈStatically VS Dynamically binding
        • 🧌Different ways in binding
        • πŸ‘¨β€πŸ’»Segfault
      • πŸ›ƒRust FFI
    • πŸ§šπŸ»β€β™‚οΈProgramming
      • πŸ“–Introduction to programming
      • πŸ“–Mutable Value Semantics
      • πŸ“–Linked List
      • πŸ“–Rust
        • πŸ“–Keyword dyn
        • πŸ“–Tonic framework
        • πŸ“–Tokio
        • πŸ“–Rust read files
  • πŸ›€οΈAI techniques
    • πŸ—„οΈframework
      • 🧷pytorch
      • πŸ““Time components
      • πŸ““burn
    • 🍑Adaptation
      • 🎁LoRA
        • ℹ️Matrix Factorization
        • πŸ“€SVD
          • ✝️Distillation of SVD
          • 🦎Eigenvalues of a covariance matrix
            • 🧧Eigenvalues
            • πŸͺCovariance Matrix
        • πŸ›«Checkpoint
      • 🎨PEFT
    • πŸ™‹β€β™‚οΈTraining
      • πŸ›»Training with QLoRA
      • 🦌Deep Speed
    • 🧠Stable Diffusion
      • πŸ€‘Stable Diffusion model
      • πŸ“ΌStable Diffusion v1 vs v2
      • πŸ€Όβ€β™€οΈThe important parameters for stunning AI image
      • ⚾Diffusion in image
      • 🚬Classifier Free Guidance
      • ⚜️Denoising strength
      • πŸ‘·Stable Diffusion workflow
      • πŸ“™LoRA(Stable Diffusion)
      • πŸ—ΊοΈDepth maps
      • πŸ“‹CLIP
      • βš•οΈEmbeddings
      • πŸ• VAE
      • πŸ’₯Conditioning
      • 🍁Diffusion sampling/samplers
      • πŸ₯ Prompt
      • πŸ˜„ControlNet
        • πŸͺ‘Settings Explained
        • 🐳ControlNet with models
    • πŸ¦™Large Language Model
      • ☺️SMID
      • πŸ‘¨β€πŸŒΎARM NEON
      • 🍊Metal
      • 🏁BLAS
      • πŸ‰ggml
      • πŸ’»llama.cpp
      • 🎞️Measuring model quality
      • πŸ₯žType for NNC
      • πŸ₯žToken
      • πŸ€Όβ€β™‚οΈDoc Retrieval && QA with LLMs
      • Hallucination(AI)
    • 🐹diffusers
      • πŸ’ͺDeconstruct the Stable Diffusion pipeline
  • 🎹Implementing
    • πŸ‘¨β€πŸ’»diffusers
      • πŸ“–The Annotated Diffusion Model
  • 🧩Trending
    • πŸ“–Trending
      • πŸ“–Vector database
      • 🍎Programming Languages
        • πŸ“–Go & Rust manage their memories
        • πŸ“–Performance of Rust and Python
        • πŸ“–Rust ownership and borrowing
      • πŸ“–Neural Network
        • 🎹Sliding window/convolutional filter
      • Quantum Machine Learning
  • 🎾Courses Collection
    • πŸ“–Courses Collection
      • πŸ“šAcademic In IT
        • πŸ“Reflective Writing
      • πŸ“–UCB
        • πŸ“–CS 61A
          • πŸ“–Computer Science
          • πŸ“–Scheme
          • πŸ“–Python
          • πŸ“–Data Abstraction
          • πŸ“–Object-Oriented Programming
          • πŸ“–Interpreters
          • πŸ“–Streams
      • 🍎MIT Algorithm Courses
        • 0️MIT 18.01
          • 0️Limits and continuity
          • 1️Derivatives
          • 3️Integrals
        • 1️MIT 6.042J
          • πŸ”’Number Theory
          • πŸ“ŠGraph Theory
            • 🌴Graph and Trees
            • 🌲Shortest Paths and Minimum Spanning Trees
        • 2️MIT 6.006
          • Intro and asymptotic notation
          • Sorting and Trees
            • Sorting
            • Trees
          • Hashing
          • Graphs
          • Shortest Paths
          • Dynamic Programming
          • Advanced
        • 3️MIT 6.046J
          • Divide and conquer
          • Dynamic programming
          • Greedy algorithms
          • Graph algorithms
Powered by GitBook
On this page
  • Juggling Technique Code Template
  • Juggling Technique Problems

Was this helpful?

Edit on GitHub
  1. πŸ‘©Freesoftware
  2. Algorithm

Juggling Technique

Juggling technique is an efficient technique for rotating arrays. It is based on the concept of finding the greatest common divisor (GCD) of the array seize and the number os steps to rotate.

Juggling Technique Code Template

Here is an example Python code that uses the Jugging Technique to rotate an integer array to the right by k steps.


def find_gcd(a,b):
    if b==0:
        return a
    else:
        return find_gcd(b,a%b)

def rotate(nums,k):
    n=len(nums)
    k%=n
    gcd=find_gcd(n,k)

    for i in range(gcd):
        temp=nums[i]
        j=i

        while True:
            d=(j+k)%n

            if d==i:
                break
            nums[j]=nums[d]
            j=d
        nums[j]=temp

Juggling Technique Problems

Rotate an array of n elements to the right by k steps. For example, with n = 7 and k = 3, the array [1,2,3,4,5,6,7] is rotated to [5,6,7,1,2,3,4]. This is kind of a sliding window problem.

Last updated 1 year ago

Was this helpful?

πŸ‘©β€πŸ’»
🎹
Rotate Array